PARTES DE LAS CELULA ANIMAL

                       

                                  PARTES DE LA CELULA ANIMAL

                                                             

Estructura de una célula animal ideal, con flagelo.
* 1. Núcleo. 1.1. Poro nuclear. 1.2. Cromatina. 1.3. Membrana nuclear. 1.4. Núcleo. 1.5. Nucléolo.
* 2. Membrana plasmática.
* 3. Complejo de Golgi (vesículas, aparato).
* 4. Ribosomas.
* 5. Retículo endoplasmático rugoso.
* 6. Retículo endoplasmático liso.
* 7. Filamentos de actina.
* 8. Flagelo.
* 9. Peroxisoma.
* 10. Microtúbulo.
* 11. Lisosoma.
* 12. Ribosomas libres.
* 13. Mitocondria.
* 14. Fibras intermedias.
* 15. Citoplasma.
* 16. Vesícula secretora.
* 17. Centrosoma (con dos centriolos).

Definiciones
1. Núcleo: Es el órgano más conspicuo en casi todas las células animales y vegetales, está rodeado de forma característica por una membrana, es esférico y mide unas 5 µm de diámetro. Dentro del núcleo, las moléculas de ADN y proteínas están organizadas en cromosomas que suelen aparecer dispuestos en pares idénticos. Los cromosomas están muy retorcidos durante la mitosis y enmarañados durante la interface cuando es difícil identificarlos por separado.
2. Membrana plasmática: Es el límite externo de las células eucarióticas. Es una estructura dinámica formada por 2 capas de fosfolípidos en las que se embeben moléculas de colesterol y proteínas. Los fosfolípidos tienen una cabeza hidrófila y dos colas hidrófobas. Las dos capas de fosfolípidos se sitúan con las cabezas hacia fuera y las colas, enfrentadas, hacia dentro. Es decir, los grupos hidrófilos se dirigen hacia la fase acuosa, los de la capa exterior de la membrana hacia el líquido extracelular y los de la capa interior hacia el citoplasma.
Su función es delimitar la célula y controlar lo que sale e ingresa de la célula
3. aparato de Golgi: Parte diferenciada del sistema de membranas en el interior celular, que se encuentra tanto en las células animales como en las vegetales y tiene la función de modificar y distribuir las proteínas sintetizadas en los ribosomas del retículo endoplasmático granular o rugoso. Estas son transportadas en vesículas de transición que se fusionan con la membrana de la cisterna del Golgi más cercana al núcleo. Luego, las proteínas se transferirán a través de cisternas; finalmente, se liberan vesículas secretoras conteniendo las proteínas procesadas a lo largo de todo el aparato. Estas vesículas se fundirán con la membrana plasmática, liberando su contenido al exterior celular. Durante el transporte a través de las distintas cisternas del Golgi, las proteínas son modificadas, ya que se les adicionan glúcidos o ácidos grasos.

4. ribosomas: Los ribosomas son complejos macromoleculares de proteínas y ácido ribonucleico (ARN) que se encuentran en el citoplasma, en las mitocondrias, en el retículo endoplasmatico y en los cloroplastos. Son un complejo molecular encargado de sintetizar proteínas a partir de la información genética que les llega del ADN transcrita en forma de ARN mensajero (ARNm). Sólo son visibles al microscopio electrónico, debido a su reducido tamaño (29 nm en células procariotas y 32 nm en eucariotas). Bajo el microscopio electrónico se observan como estructuras redondeadas, densas a los electrones. Bajo el microscopio óptico se observa que son los responsables de la basofilia que presentan algunas células. Están en todas las células (excepto en los espermatozoides). Los ribosomas están considerados en muchos textos como orgánulos no membranosos, ya que no existen endomembranas en su estructura, aunque otros biólogos no los consideran orgánulos propiamente por esta misma razón.
5. retículo  endoplasmatico rugoso: El retículo endoplasmático rugoso está presente en todas las células eucariotas (inexistente en las procariotas)5 y predomina en aquellas que fabrican grandes cantidades de proteínas para exportar. Se continúa con la membrana externa de la envoltura nuclear, que también tiene ribosomas adheridos. Su superficie externa está cubierta de ribosomas, donde se produce la síntesis de proteínas. Transporta las proteínas producidas en los ribosomas hacia las regiones celulares en que sean necesarias o hacia el aparato de Golgi, desde donde se pueden exportar al exterior.

6. retículo endoplasmatico liso: El retículo endoplasmático liso desempeña varias funciones. Interviene en la síntesis de casi todos los lípidos que forman la membrana celular y las otras membranas que rodean las demás estructuras celulares, como las mitocondrias. Las células especializadas en el metabolismo de lípidos, como las hepáticas, suelen tener más RE liso. El RE liso también interviene en la absorción y liberación de calcio para mediar en algunos tipos de actividad celular. En las células del músculo esquelético, por ejemplo, la liberación de calcio por parte del RE activa la contracción muscular
7. filamentos de actina: Los microfilamentos son finas fibras de proteínas globulares de 3 a 7 nm de diámetro que le dan soporte a la célula. Los microfilamentos forman parte del citoesqueleto y están compuestos predominantemente de una proteína contráctil llamada actina. Estos se sitúan en la periferia de la célula y se sintetizan desde puntos específicos de la membrana celular. Su función principal es la de darle estabilidad a la célula y en conjunción con los microtúbulos le dan la estructura y el movimiento.Solo están presentes en células bacteriófagos de organismos supracelulares. 


8. flagelo: En los organismos eucariotas, los flagelos son estructuras poco numerosas, uno o dos por célula, con la excepción de algunos protoctistas unicelulares del grupo de los Excavata. Se distingue a las células acrocontas, que nadan con su flagelo o flagelos por delante, de las opistocontas, donde el cuerpo celular avanza por delante del flagelo. Esta última condición, evolutivamente más moderna, caracteriza a la rama evolutiva que reúne a los reinos hongos (Fungi) y animales (Animalia). Es la que observamos, sin ir más lejos, en los espermatozoides animales (incluidos, desde luego, los humanos).

9. peroxisoma:  Los peroxisomas son orgánulos citoplasmáticos muy comunes en forma de vesículas que contienen oxidasas y catalasas. Estas enzimas cumplen funciones de detoxificación celular. Como la mayoría de los orgánulos, los peroxisomas solo se encuentran en células eucariotas. Fueron descubiertos en 1965 por Christian de Duve y sus colaboradores. Inicialmente recibieron el nombre de microcuerpos y están presentes en todas las células eucariotas.

10. microtubulo: Los microtúbulos son estructuras tubulares de las células, de 25 nm de diámetro exterior y unos 12 nm de diámetro interior, con longitudes que varían entre unos pocos nanómetros a micrómetros, que se originan en los centros organizadores de microtúbulos y que se extienden a lo largo de todo el citoplasma. Se hallan en las células eucariotas y están formadas por la polimerización de un dímero de dos proteínas globulares, la alfa y la beta tubulina.
Los microtúbulos intervienen en diversos procesos celulares que involucran desplazamiento de vesículas de secreción, movimiento de orgánulos, transporte intracelular de sustancias, así como en la división celular (mitosis y meiosis) y que, junto con los microfilamentos y los filamentos intermedios, forman el citoesqueleto. Además, constituyen la estructura interna de los cilios y los flagelos.
Los microtúbulos se nuclean y organizan en los centros organizadores de microtúbulos (COMTs), como pueden ser el centrosoma o los cuerpos basales de los cilios y flagelos. Estos COMTs pueden poseer centríolos o no.
Además de colaborar en el citoesqueleto, los microtúbulos intervienen en el tránsito de vesículas (véase la dineína o la cinesina), en la formación del huso mitótico mediante el cual las células eucariotas segregan sus cromátidas durante la división celular, y en el movimiento de cilios y flagelos.

11. lisosoma: Los lisosomas son orgánulos relativamente grandes, formados por el retículo endoplasmático rugoso y luego empaquetadas por el complejo de Golgi, que contienen enzimas hidrolíticas y proteolíticas que sirven para digerir los materiales de origen externo (heterofagia) o interno (autofagia) que llegan a ellos. Es decir, se encargan de la digestión celular.1 Son estructuras esféricas rodeadas de membrana simple. Son bolsas de enzimas que si se liberasen, destruirían toda la célula. Esto implica que la membrana lisosómica debe estar protegida de estas enzimas. El tamaño de un lisosoma varía entre 0,1-1,2 μm.2
En un principio se pensó que los lisosomas serían iguales en todas las células, pero se descubrió que tanto sus dimensiones como su contenido son muy variables. Se encuentran en todas las células animales. No se ha demostrado su existencia en células vegetales.



12. ribosomas libre: Los ribosomas son complejos macromoleculares de proteínas y ácido ribonucleico (ARN) que se encuentran en el citoplasma, en las mitocondrias, en el retículo endoplasmatico y en los cloroplastos. Son un complejo molecular encargado de sintetizar proteínas a partir de la información genética que les llega del ADN transcrita en forma de ARN mensajero (ARNm). Sólo son visibles al microscopio electrónico, debido a su reducido tamaño (29 nm en células procariotas y 32 nm en eucariotas). Bajo el microscopio electrónico se observan como estructuras redondeadas, densas a los electrones. Bajo el microscopio óptico se observa que son los responsables de la basofilia que presentan algunas células. Están en todas las células (excepto en los espermatozoides). Los ribosomas están considerados en muchos textos como orgánulos no membranosos, ya que no existen endomembranas en su estructura,1 aunque otros biólogos no los consideran orgánulos propiamente por esta misma razón.2
En células eucariotas, los ribosomas se elaboran en el núcleo pero desempeñan su función de síntesis en el citosol. Están formados por ARN ribosómico (ARNr) y por proteínas. Estructuralmente, tienen siempre dos subunidades: la mayor o grande y la menor o pequeña. En las células, estas macromoléculas aparecen en diferentes estados de disociación. Cuando están completas, pueden estar aisladas o formando grupos (polisomas). Las proteínas sintetizadas por los ribosomas actúan principalmente en el citosol; también pueden aparecer asociados al retículo endoplasmático rugoso o a la membrana nuclear, y las proteínas que sintetizan son sobre todo para la secreción.
Tanto el ARNr como las subunidades de los ribosomas se suelen nombrar por su coeficiente de sedimentación en unidades Svedberg. En las células eucariotas, los ribosomas del citoplasma alcanzan 80 S. En plastos de eucariotas, así como en procariotas, son 70 S. Los ribosomas mitocondriales son de tamaño variado, entre 55 y 70 S.3 
13. mitocondria: Las mitocondrias son orgánulos celulares encargados de suministrar la mayor parte de la energía necesaria para la actividad celular (respiración celular). Actúan, por lo tanto, como centrales energéticas de la célula y sintetizan ATP a expensas de los carburantes metabólicos (glucosa, ácidos grasos y aminoácidos). La mitocondria presenta una membrana exterior permeable a iones, metabolitos y muchos polipéptidos. Eso es debido a que contiene proteínas que forman poros llamados porinas o VDAC (canal aniónico dependiente de voltaje), que permiten el paso de moléculas de hasta 10 kDa de masa y un diámetro aproximado de 2 nm 

 15. citoplasma: El citoplasma es la parte del protoplasma que, en una célula eucariota, se encuentra entre el núcleo celular y la membrana plasmática.1 2 Consiste en una dispersión coloidal muy fina de aspecto granuloso, el citosol o hialoplasma, y en una diversidad de orgánulos celulares que desempeñan diferentes funciones.
Su función es albergar los orgánulos celulares y contribuir al movimiento de estos. El citosol es la sede de muchos de los procesos metabólicos que se dan en las células.
El citoplasma se divide en ocasiones en una región externa gelatinosa, cercana a la membrana, e implicada en el movimiento celular, que se denomina ectoplasma; y una parte interna más fluida que recibe el nombre de endoplasma y donde se encuentran la mayoría de los orgánulos.3 El citoplasma se encuentra en las células procariotas así como en las eucariotas y en él se encuentran varios nutrientes que lograron atravesar la membrana plasmática, llegando de esta forma a los orgánulos de la célula.
El citoplasma de las células eucariotas está subdividido por una red de membranas (retículo endoplasmático liso y retículo endoplasmático rugoso) que sirven como superficie de trabajo para muchas de sus actividades bioquímicas.
El retículo endoplasmático rugoso está presente en todas las células eucariotas (inexistente en las procariotas)4 y predomina en aquellas que fabrican grandes cantidades de proteínas para exportar. Es continuo con la membrana externa de la envoltura nuclear, que también tiene ribosomas adheridos.
16. vesícula secretora: La vesícula en biología celular es también llamada vesícula pinocítica, es un orgánulo que forma un compartimento pequeño y cerrado, separado del citoplasma por una bicapa lipídica igual que la membrana celular
Esquema de una célula animal típica, mostrando el citoplasma con sus componentes (u orgánulos). Orgánulos: (1) nucléolo; (2) núcleo; (3) ribosomas; (4) vesícula; (5) retículo endoplasmático rugoso (REr); (6) aparato de Golgi; (7) citoesqueleto; (8) retículo endoplasmático liso (REl); (9) mitocondrias; (10) vacuola; (11) citoplasma; (12) lisosoma; (13) centriolos.
Las vesículas almacenan, transportan o digieren productos y residuos celulares. Son una herramienta fundamental de la célula para la organización del metabolismo.
Muchas vesículas se crean en el aparato de Golgi, pero también en el retículo endoplasmático rugoso (RER), o se forman a partir de partes de la membrana plasmática. Las vesículas de secreción se denominan GERL, que significa una porción del retículo endoplásmico cerca del aparato de Golgi y carente de ribosomas. Estas vesículas se originan por secreción celular de las cisternas membranosas del complejo de Golgi, presentes únicamente en las células eucariotas y que se diferencian en lisosomas (animales) y vacuolas funcionales (en vegetales). Las vesículas con alto contenido enzimático (fosfatasa ácida y otros complejos enzimáticos hidrosolubles) se encuentran empaquetados dentro de los lisosomas en sus 4 tipos (gránulo de reserva, heterofagosoma o vacuola digestiva, cuerpos residuales y el autofagosoma, citolisosoma o vacuola autofágica), las enzimas lisosómicas son sintetizadas por los ribosomas y empaquetadas y modificadas por las cisternas membranosas del complejo de Golgi.

17. centrosoma: El citocentro o centrosoma es un orgánulo celular que no está rodeado por una membrana; consiste en dos centriolos apareados, embebidos en un conjunto de agregados proteicos que los rodean y que se denomina “material pericentriolar” (PCM en inglés, por pericentriolar material).1 2 Su función primaria consiste en la nucleación y el abordo de los microtúbulos (MTs), por lo que de forma genérica estas estructuras (conjuntamente con los cuerpos polares del huso en levaduras) se denominan centros organizadores de MTs (COMTs, en inglés MTOCs por microtubule
 organizing center). Alrededor de los centrosomas se dispone radialmente un conjunto de microtúbulos formando un áster. Los centrosomas tienen un papel fundamental en el establecimiento de la red de MTs en interfase y del huso mitótico. Durante la interfase del ciclo celular, los MTs determinan la forma celular, la polaridad y la motilidad, mientras que durante la mitosis, forman el huso mitótico, necesario para la segregación de los cromosomas entre las dos células hijas.
Por ello, el único centrosoma que existe durante G1 en interfase (formado por dos centriolos y el material pericentriolar que los rodea) debe duplicarse (aunque obligatoriamente sólo una vez). Como consecuencia, durante G2 la célula posee dos centrosomas, cada uno de ellos con dos centriolos estrechamente unidos. Estos dos centrosomas se separan durante las primeras etapas de la mitosis y se disponen en los polos opuestos de la célula, facilitando así el ensamblaje de un huso mitótico bipolar.
Las plantas superiores y los ovocitos de la mayor parte de las células animales carecen de centrosomas; en estos casos, el huso bipolar se forma por mecanismos alternativos, independientes de los centrosomas.3
Los centriolos son pequeñas estructuras en forma de barril, que están relacionadas estructuralmente (y pueden inter-convertirse) con los cuerpos basales, que por su parte son esenciales para la formación de cilios y flagelos. En vertebrados, los centriolos se componen de nueve tripletes de MTs, mientras que en Drosophila y en C. elegans casi siempre presentan MTs en doblete o unitarios, respectivamente.4 El material pericentriolar que rodea los centriolos tiene un aspecto fibroso5 y, en un centrosoma humano, contiene más de 100 proteínas diferentes.6 Entre ellas se encuentran proteínas necesarias para la nucleación de los MTs (como la tubulina-γ) y otras proteínas asociadas, algunas de ellas conservadas en los cuerpos polares de los hongos (los equivalentes funcionales del centrosoma en este grupo).7 Otras proteínas no están tan bien conservadas, pero muchas presentan dominios coiled-coil lo que indica que tienen probablemente una función estructural, sobre todo para capturar proteínas reguladoras del ciclo celular.8
En la mayor parte de las especies animales, el espermatozoide contribuye a la formación del embrión aportando un juego de cromosomas y, según las especies, uno o dos centriolos, que se combinan con proteínas presentes en el ovocito para reconstituir un centrosoma funcional.4 Una vez formado el primer centrosoma en el embrión, este orgánulo debe duplicarse y segregarse en cada ciclo celular de manera sincrónica con el genoma.



https://www.youtube.com/watch?v=6fbwQGioDuI

No hay comentarios:

Publicar un comentario